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OVERVIEW 

* 

e 

a 

* 
The purpose of this grant is to investigate the use and implementation of Ada in distributed 

environments in which reliability is the primary concern. In particular, we are concerned with the 

possibility that a distributed system may be programmed entirely in Ada so that the individual 

tasks of the system are unconcerned with which processors they are executing on, and that 

failures may occur in the software or underlying hardware. 

Over the next decade, it is expected that many aerospace systems will use Ada as the 

primary implementation language. This is a logical choice because the language has been 

designed for embedded systems. Also, Ada has received such great care in its design and 

implementation that it is unlikely that there will be any practical alternative in selecting a 

programming language for embedded software. 

As computers become increasingly powerful, traditional arguments favoring the 

construction of locally distributed systems become less convincing. If one’s only aim in 

distributing a system over multiple computers is to acquire more computing power, one should 

purchase a bigger computer. The savings in software complexity, synchronization ovehead, and 

data transfer overhead make powerful single-computer systems attractive. Additionally, 

distributed systems are only as good as their weakest nodes. If, for example, each of three 

computers in a system will operate correctly 99 percent of the time, the system as a whole will 

function, on average, only 97 percent of the time. To address this last problem, researchers are 

inventing techniques which allow software to tolerate the failure of one or more nodes of a 

distributed system. Success in this endeavor will make these systems more reliable than their 

undistributed cousins. Because numerous computer systems in such areas as the defense and 

aerospace industries must be highly reliable, this research has proceeded apace. 

Ada h a tradeanark of the U.S. Deparrmmt of Defense 
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In previous work under this grant we have shown the general inadequacy of Ada for 

programming systems that must survive processor loss. We have also proposed a solution to the 

problem in which there are no syntactic changes to Ada. While we feel confident that this 

solution is adequate, we cannot be sure until the solution is tested. A major goal of the current 

grant reporting period therefore is to evaluate the approach using a full-scale, realistic 

application. The application we are using is the Advanced Transport Operating System 

(ATOPS), an experimental computer control system developed at NASA Langley for a modified 

Boeing 737 aircraft. The ATOPS system is a full authority, real-time avionics system providing a 

large variety of advanced features. 

We have also shown previously under this grant that Ada makes no provision for software 

fault tolerance. We consider it to be important that attention be paid to software fault tolerance as 

well as hardware fault tolerance. The reliability of a system depends on the correct operation of 

the software as well as the hardware. A second major goal of the current grant reporting period is 

to extend previous work in new methods of building fault tolerance into concurrent systems. 

During this grant reporting period our primary activities have been: 

Determination of a set of criteria by which the proposed method will be judged. 

Extensive interaction with personnel from Computer Sciences Corporation and NASA 

Langley to determine the requirements of the ATOPS software. 

A preliminary analysis of the Ada implementation of a skeleton ATOPS system. 

Preparation of a report summarizing the state of the art in backward error recovery in 

Concurrent systems. 

- 2 -  
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The various documents that have been prepared in support of this research during the grant 

reporting period are included in this report as appendices. The criteria we have determined for 

evaluation of the approach to fault tolerance are contained in appendix 1. A preliminary version 

of the requirements for the ATOPS system is contained in appendix 2. This requirements 

specification is not a formal document in which detailed specifications are included. Rather it is a 

description of certain aspects of the ATOPS system at a level of detail that best suits the needs of 

the research. The results of the preliminary analysis are included in appendix 3. This appendix is 

in the form of a paper that will be presented at an upcoming Ada conference. Appendix 4 

contains our survey of backward error recovery techniques. This survey will appear in the text 

“Resilient Computing Systems, Volume 2” edited by T. Anderson, published by John Wiley. A 

list of papers and reports prepared under this grant, other than the annual and semi-annual 

progress reports, is presented in Appendix 5. For the most part, section and figure numbers as 

they will appear in the final form of each document have been retained in the appendices. 

a 

a 
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EVALUATION CRITERIA 
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EVALUATION CRITERIA 

e 

In order to assess the quality of the proposed solution to Ada’s limitations on distributed 

targets, a number of evaluation criteria are outlined in this section. These criteria are intended to 

be general standards by which any non-transparent approach can be judged in the context of any 

application requiring tolerance of processor failure. They will be applied to the software we 

develop in response to the ATOPS requirements specification. 

Structure 

The resulting program should be modular, comprehensible, and modifiable. The extent to 

which the program fails stylistically is of great concern. since the chosen fault-tolerance approach 

places much of the burden of recovery on the programmer, and the effect of that onus on a 

realistic program structure is unknown at this time. In order for non-transparent fault tolerance to 

be feasible for Ada programs, those programs must be well-structured. 

This criterion is particularly subjective, but we will decide if the goal is met by determining 

whether or not infoxmation hiding and object isolation techniques can be used effectively for a 

particular application. 

Dynamic Service Degradation 

a 

a 

A distributed program intended to survive hardwan: failures must match thc processing load 

following a failure with the processing capacity remaining. One way to avoid the waste inherent 

in adding extra computing power to the original system is to specify degraded or safe service to 

be provided following failure. If the application is amenable to such a specification, the non- 
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transparent approach can allow a high percentage of the overall computing power of the system to 

be used at all times. In contrast, the transparent approach normally must be only lightly loaded so 

as to be able to provide identical service before and after the loss of an entire processor. 

The suitability of an application for provision of safe service following hardware failure 

should be determined during the specification process. Experts should be consulted, and their 

knowledge about the particular application should be incorporated into the requirements 

document. 

Task Distribution Flexibility 

At a certain point in the design process, task redistribution may require massive code 

revision. If this point in time is early in the design process, design-time flexibility will be 

drastically reduced by the non-transparent approach. Additionally, ordinary software 

maintenance should not be prohibitively expensive when it involves task redistribution. In sum, 

flexibility of distribution of tasks among the processors should not be overly affected by those 

aspects of the program necessary for fault-tolerance. 

Distribution flexibility should be evaluated upon the completions of both design and 

coding. Flexibility can be determined by measuring the percentage of the relevant product, the 

design document or the code itself, which requires modification in order to accommodate task 

redistribution. 



Efficiency 
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The percentage of the total system computing power devoted to execution of statements 

necessary for fault-tolerance should be reasonably small. The memory and time overhead for both 

the source program and the underlying support system should be considered. The overhead due 

to fault-tolerance is categorized in the following sections: 

Entry Call Renaming 

Since a replacement for a lost task cannot be given the same name, application program 

code must sometimes be embedded in the normal program algorithms when calls to entries of 

tasks located on other machines are involved. The following code can be omitted only when the 

calling task is always aborted upon failure of the machine which runs the receiving task: 

m 

if beforeFailure then 
Perform normal pre-rendezvous computations; 
SoonToBeDeadTask.EntryCal1; 
Perform normal post-rendezvous computations; 

Perform atternate pre-rendezvous computations; 
ReplacementTask. Entrycall; 
Perform alternate post-rendezvous computations; 

else 

end if: 

e 

Exception Handlers 

0 An exception handler must be associated with each task which calls an entry in a task which 

runs on a different machine. These handlers do not use CPU cycles during normal execution, but 

they do add bulk to the program. 

a 

e - 7 .  



Data Management 

Data distribution tasks must exist on each machine to provide the programmer with the 

means to generate consistent copies of critical data items on all machines. Embedded in each 

task, calls to the data distribution task will increase the complexity of the algorithms and slow 

their execution. The resulting increase in bus traffic also will burden the system. The key 

parameters here are the number of data items required for failure survival and the frequency at 

which they must be recorded on the other machines. 

Reconjiguration 

Tasks existing on each machine will be responsible for reconfiguration of the system. They 

will use CPU cycles only at recovery time, but the sheer volume of reconfiguration work required 

during that critical period may be so large as to cause failure of the system. Most applications 

which are desired to be hardware fault-tolerant have critical real-time requirements. If the 

services to be provided after failure are radically different from those offered before failure, the 

aborting of unwanted tasks and the initialization of newly desired tasks could be prohibitively 

time-consuming. 

This is not a simple issue. Reconfiguration tasks do not necessarily have to complete before 

application processing resumes. For example, the high-priority reconfiguration task could 

terminate after performing only critical operations and staxt a low priority task which eventually 

would put the entire system in perfect order without disrupting critical processing. 



Failure Detection 

In order to detect failure when it occurs, a small constant overhead must be paid to produce 

heartbeats and to listen for those of the other machines. If an implicit token-passing protocol is 

used for inter-processor communication, failure detection costs nothing, so we will ignore this 

source of overhead in our analysis. 

Message Logging 

In order to asscss the damage to tasks not on the failed machine, all program-level 

communications will be recorded. The overhead from this source will vary with the message 

traffic between machines, so, ceteris paribus, inter-processor communication should be 

minimized. 

Alternate Service Casing 

0 
Code might be embedded in the normal program algorithms in order to be provide alternate 

service after hardware failure: 

if beforeFailure then 

else 

end if; 

Perform normal computations; 

Perform alternate computations; 

a 
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The complexity of the software codd increase geometrically as the number of tolerable 

hardware failures in the system increases. As an example of this case proliferation consider a 

structure based on a four processor system that provides different services depending upon which 

machines are operational. The following code is written from the perspective of machine 1: 

case systemstatus is 
when AIWUp => 

Process normally; 
when 134Up => 

Process with machine 2 down; 
when 124Up =Z 

Process with machine 3 down; 
when 123Up => 

Process with machine 4 down; 
when 14Up => 

Process with machines 2 and 3 down; 
when 13Up => 

Process with machines 2 and 4 down; 
when 12Up => 

Process with machines 3 and 4 down; 
when 1 Up => 

Process with machines 2,3, and 4 down; 
end case; 

The target architecture and the complexity of failure response, then, are critical application- 

dependent variables in this evaluation process. 

a 

e - 10 - 
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REQUIREMENTS OVERVIEW OF 
ADVANCED TRANSPORT OPERATING SYSTEM SOFTWARE 

FOR DISTRIBUTED EXECUTION? 

John C. Knight Marc E. Rouleau 

Department of Computer Science 
University of Virginia 

Charlottesville, Virginia, 22903 

SUMMARY 

e 

0 

e 

This document is a high-level software requirements specification for an aircraft computing 
system capable of performing all flight tasks from take-off through landing. These general 
requirements have been abstracted from those for the Advanced Transport Operating System 
(ATOPS), which is being managed by Computer Sciences Corporation for NASA. 
Implementations of this specification are not intended to be adequate for any real system; instead, 
we intend only for the structures of resulting programs to be comparable to those of actual 
aircraft computing systems, Low-level computations will be omitted wherever their absence will 
not result in a simplification of the overall program structure. This document, then, neglects 
numerous areas which should be addressed by any comprehensive aircraft computing system 
software specification. This work has been done in order to provide computer scientists with a 
realistic model against which they can test hypotheses about the construction of embedded, 
distributed systems which must perform in real time. 

t This work was supported in part by NASA grant NAGI-260 
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1. INTRODUCTION 
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The final test of any theory of software construction is practice. Does it work? 

Unfortunately, most software engineering theorists do not have access to realistic test cases. 

Previous research by Knight and Urquhart, for example, involves the suitability of Ada for the 

programming of embedded, distributed, real-time systems which must not fail. In particular, they 

were concerned with the survival of distributed Ada processes after failure of a nodes running 

part of the process. A theory about the construction of such systems was proposed. The 

feasibility of that theory was tested by constructing a distributed testbed which implemented the 

proposed semantic enhancements to Ada. Indeed, simple Ada programs, written according to 

certain guidelines, can be run on the testbed, and they do survive arbitrary failure of one of the 

nodes. 

t 

The above sequence of research is familiar to all scientists. A problem is identified, a 

solution is proposed, and the solution is tested. In this case, the success of the toy program tests 

was encouraging, but many important questions remained unanswered. How do the 

aforementioned guidelines affect the construction of a program? Can software flexibility, a major 

reason for distributed computing, be maintained? Can established software engineering criteria 

for program quality be satisfied? Can programs written in this way satisfy real-time constraints? 

These questions can only be answered definitively in a practical, real-world context. 

Unfortunately, those kinds of answers require tremendous amounts of time and money, so, given 

finite time and resources, the solution is to test the theory incrementally. Instead of collecting a 

quantity of requirements documents, implementing them to the letter, and then evaluating the 

results, we choose to concentrate on one application only. The basic idea is to abstract from the 

f Ada is a trademark of the U.S. Department of Defense 
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application a requirements document that is specific enough to be realistic and general enough to 

be used in a variety of contexts. Then various program structures on various target architectures 

could be easily constructed and rapidly evaluated for practical viability. 

We believe this document could be useful to other researchers who face similar difficulties 

with practical evaluation of software engineering constructs. Admittedly, the credibility of this 

still-theoretical kind of analysis is not equivalent to that of an evaluation of a fully detailed, real- 

world system. In particular, we expect to unearth no incontrovertible evidence as to the capacity 

of a system to meet real-time deadlimes. We do expect our analysis to yield useful insights 

available only from the study of a plausible software structure, and we anticipate a sizable 

savings in effort over the more credible all-out implementation effort. 

The application is an aircraft navigation and control system capable of automatically 

performing all flight tasks from take-off through landing. The remainder of this document 

focuses on particulars of the application. 

2. SYSTEM INPUTS 

All inputs to the system fall in one of six general categories: 

Onboard navigation sensors provide the software with situational information. These 

devices measure such quantities as wind speed, position, velocity, acceleration, roll, pitch, and 

yaw. Due to their unreliability, all navigation sensors are duplicated or triplicated. 

Ground-based navigation aids supplement the onboard navigation sensors. During 

normal flight, angle and distance data from radio beacons at known locations allow the software 

to compute aircraft position accurately. The computed position then serves as a correction to the 

filters which integrate acceleration into velocity and position. Different, more accurate, 

a - 13 - 
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navigation aids are used in the vicinities of airports. Most airports provide a navigation aid called 

the Instrument Landing System as).  ILS is accurate enough to permit fully automatic landings; 

however, curved approaches cannot be supported because of the narrow range of the transmitters. 

Certain airports provide the more advanced Microwave Landing System (IvfLS). Because of the 

sixty degree horizontal range, curved approach landings can be fully automated. 

Analog control devices, linked to the computing system by position sensors, allow the pilot 

to control the aircraft directly. A joystick, known as the brolly handle, permits the pilot to 

control, via the ailerons and elevators, the attitude of the aircraft. A foot pedal in the cockpit 

affords the pilot direct control of the rudder. An accelerator pedal controls the throttle. 

The Flight Control Panel (Fa) allows the pilot to select the manner in which the flight of 

the aircraft will be controlled. Some modes selectable via this panel supplement the analog 

control devices by causing the software to maintain current attitude, flight path, or track angle. 

This panel also allows the pilot to bypass the analog control devices completely. Knobs on the 

panel can be used to specify digitally the desired speed, altitude, flight path angle, and track 

angle. A final set of modes which direct the software to control the aircraft automatically by 

comparing position to the flight plan can also be selected on the flight control panel. 

The Navigation Control Display Unit (NCDU) is the medium by which the pilot can 

inspect and modify information pertinent to the flight plan. He can use it to request general 

information about airports, runways, and navigational aids and to input or to modify the current 

flight plan. 

The two display control panels allow the pilot to select display formats for the Primary 

e - 14 - 
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Flight Director (PFD) and the Navigational Display (ND). 
a 

2.1. SYSTEM OUTPUTS 
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All outputs from the system fall in one of five general categories: 

Effector outputs conml flight of the aircraft. These outputs include commands to the 

ailerons, delta elevators, rudder, and throttle. The commands take the form of positions to which 

the various control surfaces and the throttle should move. 

The FCP indicator lights inform the pilot of the level of automatic flight assistance 

currently being offered. Digital readouts on this panel tell him the speed, altitude, flight path 

angle, and track angle. These values are either current or desired as indicated by the lighting 

configuration of the panel. 

Character outputs to the NCDU screen provide appropriate feedback to the keyboard 

requests of the pilot. Infomation about airports, nmways, the current flight plan, navigation 

sensors, and navigational aids can be displayed on the NCDU screen. 

The PFD and ND Screens are the devices by which the pilot can monitor the situation of 

the aircraft. The PFD Screen displays the orientation of the aircraft in space. The ND screen 

displays the progress of the aircraft as compared to the flight plan. 

The navigation radio tuner adjusts the radio to receive the frequencies transmitted by the 

ground-based beacons which provide correction data to the navigation function. 



2.2. FUNCTIONAL UNITS 
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The application can be divided into three major functional units. Navigation computes the 

situation of the aircraft. The concept of situation includes such measurements as position, 

velocity, acceleration, roll, pitch, and yaw. Various filters within the navigation unit compute 

these quantities from flight sensor readings and ground aid transmissions. 

Several sensor systems with overlapping functions are used by the navigation unit. 

Microwave Landing System (MLS) transmitters, located on runways in a few airports around the 

U.S.A., provide the most accurate measurements of latitude, longitude, and position. When the 

aircraft is in the vicinity of these transmitters, integration of acceleration measurements from the 

Inertial Navigation System ( INS) gyros on board the plane use the MLS-derived position as a 

filter correction. The secondary ground-based landing aid is the Instrument Landing System 

(ILS), which supplies the correction term to the filter near runways which are not equipped with 

MLS. When the aircraft is not landing, data from radio beacons at known locations on the 

ground allow computation of the correction term. Other sensors measure true air speed, magnetic 

heading, magnetic variation, and barometric altitude, and these sensors comprise a correction and 

backup system to the other navigation sensor systems. 

The second major function of the application is flight control, which can be divided into 

two parts, automatic guidance and the manual control laws. Both kinds of flight control generate 

positions for the aircraft control surfaces and throttle. They differ primarily in the level of 

automation provided. 

Guidance compares the aircraft situation to the flight plan and generates control surface and 

throttle positions which move the vehicle into accord with the flight plan. In addition to the 

current flight plan and the navigation results, guidance uses as inputs the computed engine 
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pressure ratio limits and the current control surface positions. These supplementary data impose 

limits on the actions which can be directed by the guidance routines. For example, a guidance 

computation which would cause the vehicle to accelerate to the point of exceeding the engine 

pressure ratio limits will be limited to a safe level. Similarly, drastic changes in the control 

surfaces are limited to avoid a rough ride and possible physical damage to the aircraft. 

Horizontal guidance manages the direction (in the common sense) of the aircraft by 

controlling the rudder and ailerons. Waypoints, or locations over which the aircraft should pass, 

are input via the cockpit, and horizontal guidance steers the vehicle from one waypoint to the 

next in straight-line fashion. Vertical guidance manages the altitude of the aircraft by controlling 

the delta elevators. When vertical guidance is engaged, each waypoint will have an altitude 

associated with it in addition to the requisite latitude and longitude data. An aircraft using 

vertical guidance will travel between each waypoint with a constant rate of altitudinal change. 

Time guidance manages the acceleration of the plane by controlling the throttle. Amval times 

associated with each waypoint establish, between waypoints, a constant velocity which situates 

the vehicle over each waypoint at the specified time. 

0 .  
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Horizontal, vertical, and time guidance are individually selectable on the flight control 

panel; however, vertical guidance is disabled until horizontal guidance is engaged, and time 

guidance cannot engage until vertical guidance has done so. Also necessary for engagement of a 

particular level of guidance is specification of a flight plan specific enough for that level. For 

example, time guidance cannot operate until amval times are associated with each waypoint in 

the path. 

The second kind of flight control, the manual control laws, performs the same basic 

function as does automatic guidance; however, the inputs and therefore the actual computations 

differ dramatically. Instead of using path and navigation data, the manual control laws translate 

- 17 - 



analog pilot directives into positions for the control surfaces and the throttle. 

Three control laws, abstracted from the analog computers which used to operate airplanes, 

comprise the heart of the unit. The lateral control law, analogous to horizontal guidance, 

computes the aileron and rudder commands. The elevator control law, analogous to vertical 

guidance, computes the delta elevator command. The throttle control law, analogous to time 

guidance, computes the throttle command. 

0 

Different levels and kinds of automatic assistance are available to the pilot in this manual 

control mode. Also, for every flight mode the software prevents the pilot from causing the plane 

to stall or incur physical damage. For example, if someone were to fall on the brolly handle in 

such a way as to push it to some extreme, the software would obey the directive only to a point 

short of disaster. 

0 .  

0 

0 

0 

The simplest mode is called attitude control wheel steering (ACWS). ACWS maintains the 

existing pitch and roll, the attitude, of the aircraft whenever the pilot returns the brolly handle to 

the detent position. When the brolly handle is not at detent, the aircraft in ACWS mode simply 

translates the position of the joystick into appropriate behavior of the vehicle control surfaces. 

Velocity control wheel steering is similar to ACWS but offers somewhat more assistance. 

Instead of maintaining the attitude of the vehicle when the pilot returns the brolly handle to 

detent, VCWS holds steady the velocity vector of the aircraft. Unlike ACWS, then, VCWS 

controls the throttle as well as the control surfaces. 

The third and final function of the application is pilot information. This function provides 

formatted data to the two horizontal situation indicators and the attitude director indicator for 

display to the pilot. The three control panels associated with the indicators indicate the formats 

-18- 



e 
and contents of the display output data. Navigation and guidance results are the inputs to the 

display unit. 

3. SYSTEM DATA FLOW 

e 

e 

The following diagrams depict the data flow of the example application. Dashed boxes 

indicate functional units which are more fully described at a higher level of abstraction. Dotted 

boxes indicate functional units or groups of units which are more fully described at a lower level 

of abstraction. 

e 

e 

e 

e 
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4. REAL-TIME CONSIDERATIONS 
e 

Each function operates either in the foreground or in the background. The clock granularity 

is ten milliseconds, and typical foreground tasks execute once every fifty milliseconds. The 

e 

e 

e 

e 

e 

foreground functions can be grouped according to the approximate relative lengths of time they 

require to execute (if the situation demands their execution). Functions in group A execute in one 

relative time unit. Those in groups B and C require two and three relative time units, 

respectively. For example, execution of a function from group A is one-third as costly as is 

execution of a function from group C. The following functions belong to group A: 

Horizontal guidance 
Vertical guidance 
Time guidance 
ILS processing 
INS processing 
Navigational aid processing 

The following functions belong to group B: 

MLS processing 
Lateral control law 
Vertical control law 
Throttle control law 
Sensor e m r  detection and signal selection 

e 

The following functions belong to group C: 

0 ND processing 
PFD processing 

a 
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5. DESCRIPTION OF CSC IMPLEMENTATION 

a 

Computer Sciences Corporation developed and maintains the ATOPS software for NASA. 

They implemented the system on two computers. One computer, called the Displays Computer 

@C), is responsible largely for such non-crucial tasks as the computation and formatting of 

information for the cockpit displays. The other computer, called the Flight Management and 

Control Computer (FM/FC), handles the more critical aspects of the duties of the computing 

system. It is with the software on this computer that we are concerned here. 

5.1. Timing 

Time in this implementation is divided into minor frames, five of which comprise a major 

frame. Minor frames are of ten milliseconds duration, and major frames last for fifty 

milliseconds. All nodes have access to the same clock, so major and minor frames begin at the 

same real times at all nodes. See figure B.l for the expected flow of control within a typical 

major frame. 

5.2. Fast 

The fast system functions are executed every ten milliseconds. Computations in this system 

proceed at a fifty-millisecond rate; however, certain calculations are so sensitive to time that as 

inputs they must have sensor readings which are current to within ten milliseconds. Also, the 

effectors associated with these calculations must receive the results within ten milliseconds of 

their computation. One duty of the fast loop, then, is to handle the time-sensitive inputs and 

outpu tS . 

The rest of the inputs and outputs are handled once every major frame. They are received 

and sent en masse in order to reduce the overhead associated with a piecemeal approach. The fast 
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Minor Cycle #I 
(@9 ms) 

Minor Cycle m 
(10-19 ms) 

Minor Cycle Cn 
(B29 ms) 

Minor Cycle #4 
(30-39 ms) 

Minor Cycle M 
(40-49d 

Send dl ou'puta. 
Rccdvt d inputs. 

.......................................................... 

Bepin execIltion of medium speed functims. 

~ ~~ ~~ ~ 

S a d  10 ms outputs. Rcccive 10 mr inputs. .......................................................... 

Cmtinuc execution of medium speed functiau. 

Send 10 mn outpura. Rcccive 10 ms inputs. ........................................................... 

F& cxccutim of medium speed functions. 

............ Cb,&ub.e.x..6.& .ofslow hin'cimrb.. ............ 
Send 10 ms outpuu. Receive 10 ms inputs. 

Satisfy infn-nodc d a t i m  rcquircmmu. 
........................................................... 

C&uc e x d o n  d slow speed functiau. 

Send 10 mr outpuu. Receive 10 M inpuu. ........................................................... 

Continue e x d m  d slow spccd functiau. 

Fig. 5.1 Major Cycle Timing Example 

-28 -  



e 

loop performs this function once out of each five iterations. 
a 

5.3. Medium 

a 

a 

The following list details the operation of the medium loop. The functions are listed in the 

order of execution during each iteration: 

(1) Input. Check required discrete and analog inputs for errors. Format inputs for use by other 

modules. 

(2) Flight control panel. Calculate desired automatic flight modes. Prepare lighting 

configuration and window values for output to flight control panel (less the four bottom-left 

buttons). 

e 

a (3) Navigation control display unit. Acquire any NCDU inputs. Configure slow NCDU 

process for general activities required by inputs. Compute selected outputs to NCDU. Send 

all NCDU outputs. 

e 
(4) MLS. Compute aircraft position, velocity. and acceleration vectors from the received MLS 

signals if microwave landing system mode is enabled. 

a 

a 

(5) Flight control mode. Calculate the aircraft flight mode, which configures the flight control 

laws. Based upon the possible inclusion of an airport in the flight plan and the validity 

status of the microwave landing system, assign alternate sources for some navigation and 

flight control variables. Prepare lighting configuration for output to the four bottom-left 

buttons on the flight control panel. 

a 

0 
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e 

Navigation. Compute aircraft heading, position, velocities, and accelerations based on any 

of several sources. Compute a number of useful quantities from the fundamental results. If 

MLS computations are valid, derive all outputs except true heading from MLS results. If 

MLS computations are not valid, and INS sensors are functional, use the INS results as 

corrected by the radio navigation computations performed by the navigation slow loop. If 

the MLS and INS are not operational, calculate the navigation solutions from true air speed, 

magnetic heading, and magnetic variation. For both INS and air data solutions, derive the 

vertical position, velocity, and acceleration results from the barometric altitude and INS 

vertical acceleration measurements. 

Horizontal guidance. Execute only when 2D guidance is enabled. Compare calculated 

aircraft latitude and longitude to desired path. Generate lateral steering signal for use by 

lateral control laws. 

Vertical guidance. Execute only when 3D guidance is enabled. Compare calculated 

aircraft altitude to desired path. Generate vertical steering signal for use by vertical control 

law. 

Time guidance. Execute only when 4D guidance is enabled. Compare calculated aircraft 

position to desired position at current time. Generate acceleration command for use by 

throttle position software. Generate display and NCDU inputs. 

(10) Automatic flight mode. Based upon guidance computations and the desired automatic 

flight mode computed by the flight control panel software, calculate the actual flight mode. 

Provide the lateral and vertical control laws and the throttle position software with inputs 

based upon the actual flight mode. 

e -30 - 



e 

e 

0 

e 

e 

0 

e 

(11) Lateral control laws. Compute the aileron and rudder commands from control inputs 

provided by the automatic flight mode software and from control inputs selected according 

to the actual flight mode. 

(12) Vertical control law. Compute the delta elevator command and the stabilizer trim 

discretes from control inputs provided by the automatic flight mode software and from 

control inputs selected according to the actual flight mode. 

(13) Throttle position. Compute the throttle position from the control inputs provided by the 

automatic flight mode software and from control inputs selected according to the actual 

flight mode. 

(14) Sensor utilization. Determine which of the inputs subject to e m r  checking are in use and 

therefore need to be checked during the next cycle. 

(15) Output. Format outputs to effectors and cockpit. 

5.4. Slow 

The following list details the functions of the FM/FC slow loop in the order in which they 

are executed iteratively: 

(1) Navigation Control Display Unit. Parse NCDU input. Perform functions requested by 

NCDU input. Format NCDU output pages. Send resulting pages to NCDU fast loop 

executive for eventual output. Define aircraft flight path and distribute it to the functions 

which use it. 
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Navigation. Tune navigation radio receivers. Compute position and velocity corrections to 

fast loop navigation computations. Provide display software with navigational mode 

information. 

Earth radius. Compute radii of curvature in the east-west and north-south planes. Set 

magnetic variation to INS measurement of it if INS navigation is enabled. 

Wind velocity. Calculate wind speed and direction. Make the results available to the 

display software. 

Engine pressure ratio limits. Calculate the maximum engine pressure ratios for the 

climbing. cruising, and continuous thrust situations. Make the three calculations available 

to the throttle position software. 

5.5. Top-Level Code 

The following Ada code provides a detailed description of the overall organization of the 

two-computer CSC implementation: 

procedure AutomaticFlightControl is 

package FlightManagementAndControl is 
type ToDisplays is 
record 

end record; 
-- components of variant record to be sent to displays computer 

task FastFMandC is 
for FastFMandC use at (Cpul, CpulMeml, UndefinedAddress); 
pragma priority ( 7 5 )  ; 
entry ClockTick; 
for ClockTick use at (Cpul, CpulMeml, . . . ) ; 

end FastFMandC; 

task MediumFMandC is 
f o r  MediumFMandC use at (Cpul, CpulMeml, UndefinedAddress); 
distribute-to (Cpul); 
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pragma priority ( 5 0 )  ; 
entry Iterate; 

end MediumFMandC; 

task SlowFMandC is 
for SlowFMandC use at (Cpul, CpulMeml, UndefinedAddress); 
pragma priority (25)  ; 
entry Start; 

end SlowFMandC; 
end FlightManagementAndControl; 

package body FlightManagementAndControl is 
task body FastFMandC is 
begin 

framecounter := 0; 
loop -- forever 

accept ClockTick; 
framecounter := (framecounter + 1) mod 5; 
if framecounter = 0 then 

SendAllOutput s ; 
ReceiveAllInputs; 
MediumFMandC. Iterate; 

SendlOMsOutputs; 
if framecounter = 4 then 

end if; 
ReceivelOMsInputs; 

else 

FastDisp1ay.FMandC (dataForDisplaysComputer); 

end if; 
end loop; 

end FastFMandC; 

task body MediumFMandC is 
begin 

SlowFMandC.Start; 
loop -- forever 

accept Iterate; 
ForrnatSensorInputs; 
ModeSelectPanelLogic; 
NcduFast; 
Mls; 
FlightControlMode; 
NavigationFast; 
HorizontalGuidance; 
VerticalGuidance; 
TimeGuidance; 
AutomaticFlightMode; 
LateralControlLaws; 
VerticalControlLaw; 
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Thrott leCont rollaw; 
SensorUtilization; 

end loop; 
end MediumFMandC; 

task body SlowFMandC is 
begin 

accept Start; 
loop -- forever 

Ncdu S low ; 
Navigat ionslow; 
EarthRadius; 
WindSpeedandDirection; 
EnginePressureRatioLimits; 

end loop; 
end SlowFMandC; 

end FlightManagementAndControl; 

package PilotDisplays is 
task FastDisplay is 

for FastDisplay use at (Cpu2, Cpu2Mem1, Undef inedAddress) ; 
pragma priority (75) ; 
entry ClockTick; 
for ClockTick use at (Cpu2, Cpu2Mem1, . . . ) ; 

end FastDisplay; 

task MediumDisplay is 
for MediumDisplay use at (Cpu2, Cpu2Mem1, UndefinedAddress); 
pragma priority (50) ;  
entry Iterate; 

end MediumDisplay; 

task SlowDisplay is 
for SlowDisplay use at (Cpu2, Cpu2Mem1, UndefinedAddress); 
pragma priority (25) ; 
entry Start; 

end PilotDisplays; 
end SlowDisplay; 

package body PilotDisplays is 
task body Fastspeed is 
begin 

framecounter := 0; 
loop -- forever 

accept Cloc kT i c k ; 
framecounter := (framecounter + 1) mod 5; 
if framecounter = 0 then 

ReceiveAllInputs; 
MediumDisplay . Iterate; 

0 
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else 
ReceivelOMsInputs; 
if framecounter = 2 then 

SendSensorSelections; 
elsif framecounter = 3 then 

accept FMandC (data: in BigArray) do 
dataFromFMandCComputer := data; 

end FMandC; 

SendDisplayOutputs; 
elsif framecounter = 4 then 

end if; 
end if; 

end loop; 
end FastDisplay; 

task body MediumDisplay is 
begin 

SlowDisplay.Start; 

accept Iterate ; 
SelectSignalsAndDetectFailures; 
FormatPanelInputs; 
FormatSensorInputs; 
ComputePfdValues; 
FormatPfdOutputs; 
NavDisplayFast; 
PrepareAllOutput s ; 

loop 

end loop; 
end MediumDisplay; 

task body SlowDisplay is 
begin 

accept St art ; 
loop 

NavDisplayBackground; 
end loop; 

end SlowDisplay; 
end PilotDisplays; 
end AutomaticFlightControl; 
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Department of Computer Science 
University of Virginia 

Charlottesville, Virginia, 22903 

SUMMARY 

Ada was designed for the programming of embedded systems, and has many 
characteristics intended to promote the development of reliable software. 
Many embedded systems are distributed, and an important characteristic of 
such systems is the ability to continue to provide adequate though 
perhaps degraded service after loss of a processing node. 
We are concerned with the issues that arise when critical distributed systems 
are programmed in Ada. 
We have shown previously that numerous aspects of Ada make its use on 
distributed systems problematic if processor failures have to be tolerated. 
The issues are not raised from efforts to implement the language but 
from the lack of semantics defining the state of an Ada program 
when a processor is lost. 
We have suggested appropriate semantic enhancements to Ada and have described 
the support system required to implement these semantics. 
We are evaluating and refining this approach by applying it to a 
large-scale aerospace system. 
The application is the resident software for a modified 
Boeing 737 transport equipped with a fully automated, digital, 
control system. 
The Eramework for a fault-tolerant version of the 
complete system has been constructed, and certain critical functions 
have been programmed in their entirety. 
In this paper we present a summary of the application, details of its 
implementation in Ada, and a preliminary evaluation of the utility of Ada in 
this context. 

e 

t Ada is a trademark of the U.S. Department of Defense 
$ 'Ihis work was s m e d  in pan by NASA grant NAG1-260 
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INTRODUCTION 
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0 
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A distributed system is only as reliable as its weakest node. For example, if each of three 

computers in a system will operate correctly 99 percent of the time, the complete system will 

function, on average, only approximately 97 percent of the time. If a node has failed, however, a 

distributed system has the potential to continue providing service since some hardware facilities 

remain. Success in this endeavor will make these systems more reliable than single-processor 

architectures. More importantly, distributed systems can, if necessary, provide degraded service 

following the failure thereby allowing either reduced service or a timely, controlled shutdown. In 

real-time control applications requiring very high reliability, such as are found in the defense and 

aerospace areas, this can be extremely important. 

Ada’’2 has been designed for such critical, real-time applications and for the development 

of programs distributed over multiple computers. Unfortunately, it has been shown to be 

deficient in this area3. In fact, the Ada definition ignores the problem completely and implies that 

the Ada machine does not fail. With this in mind, some researchers have proposed a 

fran~paren?’~ approach to recovery in which an application program is unaware of the fault- 

tolerant capabilities of the system. Loss of a processing node would cause automatic 

reconfiguration of the system, and the reconfiguration would be invisible to the program. 

Operation of the system before and after node failure would be identical. The burdens of 

recovery and of the preparation needed for that recovery are placed upon the execution-time 

environment. 

Knight and Urquhart3 have suggested a method by which system designers can specify 

explicitly the service to be offered following node failure. This allows for the specification of 

degraded, or safe , service in systems which, due to lack of computing power, cannot provide full 

functionality after a hardware failure. In addition, with this approach designers control the 

normal operation overhead required to prepare the software for an arbitrary hardware fault. This 
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overhead consists primarily of transmissions of critical data items required during reconfiguration 

to bring the system to a consistent state. This method is termed the non-transparent approach to 

tolerating the loss of a processor in a distributed system. 

Previous research has shown that the non-transparent method is theoretically feasible. A 

distributed testbed containing an execution-time system which provides the necessary facilities 

for non-transparent recovery has been constructed7. A simple distributed Ada program, written 

according to certain guidelines, can be run on the testbed, and arbitrary failure of one of the nodes 

will initiate reconfiguration and the return to “acceptable” operation (lacking one computer). 

The goal of the research described here is to evaluate the practical value of non-transparent 

recovery as proposed by Knight and Urquhart by analyzing their feasibility in the context of one 

realistic application. The application is NASA’s Advanced Transport Operating System 

(ATOPS), an aircraft computing system capable of performing all flight tasks from take-off 

through landing. While the resultant data point will provide, in and of itself, little persuasive 

evidence for or against the proposed non-transparent method, the associated analysis should 

provide useful insight into the issues relevant to hardware-fault-tolerant Ada distributed systems. 

This paper is organized as follows. In the next section we summarize the issues 

surrounding the use of Ada on fault-tolerant distributed systems. The application being examined 

in this experiment is then described, and the design of the experiment, including the criteria used 

in evaluation, is then presented. The preliminary analysis of the experiment is then discussed and 

finally a summary and conclusions are presented. 

Ada SEMANTICS AND NON-TRANSPARENT CONTINUATION 

8 

0 

In this section we summarize the difficulties with Ada semantics and the approach to non- 
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transparent continuation suggested by Knight and Urquhart. For more details see reference 3. 

Deficiencies In Ada Semantics 

* 

* 

0 

There are two categories of semantic deficiency in Ada. First, the definition of Ada lacks 

any clear definition of the meaning of a distributed Ada program, i.e., there are no distribution 

semantics. Specification of the basic units of distribution, whether they be individual statements, 

tasks, packages, or anything else, is omitted as is the detailed meaning of such a program. This is 

surprising since representation clauses are available to control many other implementation areas 

in great detail. 

The lack of distribution semantics is not a simple problem to solve. It is not sufficient 

merely to define what can be distributed. It is also necessary to define exactly what distribution 

of an object will mean. For example, if a task can be distributed, it is essential that the meaning 

of the distribution include details of the location of the associated code and data. A syntax to 

control distribution is also required, of course. 

The second semantic deficiency is the lack of definition of the meaning of a program 

following a hardware failure. An Ada program operating on a distributed target is obviously 

going to be damaged by the loss of a node from the system. The extent of the damage must be 

precisely defined since it goes beyond the loss of the software on the failed node and affects the 

software on nodes that survive failure. For example, if two tasks are engaged in a rendezvous 

when a failure occurs, the caller would be permanently suspended if the server was lost since the 

rendezvous would never end and the caller could not distinguish this situation from slow service 

by the server. 

Another area where damage to tasks surviving failure can occur is the possibility of loss of 

context. If a nested task survives failure but the surrounding task is lost, the nested task may lose 
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part of its context (the local variables for the surrounding task) and cannot be accessed since no 

remaining undamaged tasks can know its name. 

The failure semantics of a programming language define precisely the state of the software 

that remains following the loss of a processor at an arbitrary point. Failure semantics for Ada 

must be defined if the software that remains is to be in a form that can be predicted accurately 

during design. This is necessary if some form of service is to be provided reliably after a failure. 

Non-Transparent Continuation 

e 

0 

0 

a 

Distribution and failure semantics for Ada that involve no syntactic changes other than the 

definition of a pragma have been defined for Ada3. The major component of distribution in the 

approach is the task. A program is structured as a set of tasks with a main program that consists 

solely of a null statement. The tasks nested within the main program can be distributed as 

required using a pragma. Tasks nested at lower levels are allocated to the processor of the 

surrounding task(s). 

Failure semantics are defined to be equivalent to abort semantics. Where a task is lost 

through hardware failure, it is assumed that it was in fact aborted and the effect on the remaining 

program is therefore well defined. It is necessary to supplement the usual Ada execution-time 

support system in order to provide these semantics. Continuing with the example of the broken 

rendezvous used above, in that case it is assumed that the lost task was aborted and the support 

system will be required to raise a tasking error exception in the calling task. 

Each processor has a reconfiguration task associated with it and this task receives a call to a 

predefined entry when a processor failure occurs. The support system is required to monitor 

processor health and signal the loss of of a processor to those that remain by making this entry 

call when necessary. The reconfiguration task executes code that takes care of the needs of the 
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processor on which it resides. Alternate tasks for those that have been lost reside on remaining 

processors and are activated by the reconfiguration task using entry calls. 

A necessity in any form of continuation is the availability of data that survives the failure. 

Many components of an application update local data that must be available on each real-time 

cycle. To recover such a function, a consistent copy of the local data must be available on the 

processor that executes the alternate software. In a distributed system the reliable distribution of 

such data can be achieved with a two-phase commit In the proposed non-transparent 

continuation, the data to be made consistent is determined by the programmer and the times when 

the copies are updated are the programmer’s responsibility. Data distribution is achieved by 

rendezvous with a data consistency task that implements the two-phase commit protocol. 

AU inter-task communication takes place using the features provided by Ada whether this is 

inter- or intra-machine communication. This provides uniformity for the programmer and allows 

compile-time checking. Following failure, however, services will be resumed by alternate tasks 

to replace those lost by failure and these tasks will have different names. This means that all 

inter-machine communication will have to be programmed with explicit selection of the entry to 

be used. This has a substantial effect on program structure and hence on performance. 

EXPERIMENT DESIGN 

0 

e 

Our approach in this research is to attempt to construct software in Ada to meet the 

specifications of the ATOPS system and to incorporate tolerance to hardware failures also. 

Analysis is performed during and after construction to determine the success or otherwise of the 

non-transparent approach. 

No single conclusion about the utility of non-transparent continuation can be drawn from 

this research since what constitutes a serious limitation in one context might not be in another. 
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There are several distinct criteria that must be used in the evaluation; each criteria affects the 

overall determination of the success of the method in any given application. These criteria fall 

into three broad categories - development-time issues, execution-time issues, and the effect of 

different target architectures. In this section we discuss the criteria we are using and the reasons 

for their use. 

Development-Time Issues 

0 

* 

9 

Non-transparent continuation allows the programmer to determine the details of recovery 

following failure. The reconfiguration software and the software for alternate services must be 

prepared during development but we do not consider this software as overhead since it constitutes 

the implementation of a substantially more useful application than an implementation with no 

recovery. However, its volume can be measured and memory space must be available for it. 

It is very desirable to delay decisions about binding functions to processors as late as 

possible in the development process. A major reason for using a single program on a distributed 

target is flexibility. A function that is written as a distributable entity, say a task, can be moved to 

a different processor quite simply if the task is merely pan of a single program. All that is 

required, in principle, is a change to the distribution directive, recompilation, and relinking. 

Non-transparent continuation reduces this flexibility since, if the function being moved has to 

survive processor failure, alternate software must be provided. Thus, moving a function requires 

not only the possible movement of the alternate software, but also the revision of the 

reconfiguration tasks, changes to the use of the data distribution tasks, and possibly changes to 

the other software. For example, some communication may have to be modified to be prepared 

for redirection, and other communication may have to be modified to remove the ability for 

redirection. 
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Another area of flexibility provided by distributed systems is the ease of incremental change 

in computing performance. If, during development, it is discovered that the estimate of required 

performance is incorrect, processors can be added or deleted as needed. Adding or removing a 

processor to or from a system incorporating non-transparent fault tolerance amounts to requiring 

the movement of several functions at once from one processor to another. It is important to 

ensure that non-transparent continuation does not reduce the flexibility of distributed systems to 

the point where useful flexibility is lost. 

A final concern at development time, is the possibility that the inclusion of non-transparent 

continuation may so distort the desired form for a program that properties of programs in the 

software engineering sense, such as good modularity, information hiding, etc., might be lost. 

These are difficult properties to quantify and are, to a large extent, subjective, but any indication 

that these properties must be sacrificed for recovery would be serious. 

Execution-Time Issues 

a 

At execution time, the major concern is overhead. The resources used by non-transparent 

continuation must not reduce overall performance to the point where real-time deadlines cannot 

be met. Areas where overhead will be incurred are: 

communications bus traffic, 

processor overhead used in data distribution, 

processor overhead used in the implementation of failure semantics, 

processor overhead used by the application to determine select between primary and 

alternate software, and 
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(5) memory space required to support alternate software. 

e 

An issue related to overhead is response time. It must possible for recovery to take place 

fast enough following the loss of a processor to ensure that the equipment being controlled does 

not suffer from a lack of service. The reconfiguration task must be started, must perform its 

services, and alternates must be started sufficiently quickly that real-time deadlines are not 

missed. 

e 
Target Architecture 

a 

a 

e 
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All of the above criteria are affected in practice by the target architecture. The key 

elements of the architecture are: 

(1) the number of processors provided, 

(2) the types of the processors and the number of each of the different types, 

(3) the relative performance levels of the processors, and 

(4) the sizes of the supplied memories. 

Clearly, if a system is operating with all resources fully used, it will be impossible to 

maintain all services following failure. In fact, if all available memory is used in providing the 

original services, no fault tolerance will be possible since there will be no memory space for 

alternate software or reconfiguration software. 

In some systems, specialized processors are provided to allow processor organizations that 

are tailored to specific needs of the application. For example, an array processor or a fast- 

fourier-transform processor might be provided to enhance performance. Loss of this type of 

equipment has a different effect on a distributed system than loss of a general-purpose processor 

because it is unlikely that the remaining equipment will be able to provide service at the speed 
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required. Some compromise will be necessary. Similarly, it is unlikely that a specialized 

processor will be able to take over the services lost when a general-purpose processor is lost. 

In this research we have selected a small number of architectures that we feel are typical 

and that can support the ATOPS application. We are investigating, separately, architectures 

involving two, three, and four homogeneous processors. We assume that there is sufficient 

memory on each to accommodate the necessary redundant software but that in each case almost 

all of the available computing resources are used by the original application. Thus each analysis 

is supplemented by an attempt to add a processor to each target being investigated. 

APPLICATION DESCRIPTION 

The application we are analyzing in this research is an experimental aircraft navigation and 

control system capable of performing automatically all flight tasks from take-off through landing. 

The production system operates on a modified Boeing 737 in a flight controls research program at 

NASA Langley Research Center. The operational software is written mostly in HAL/S'O. In 

principle, failure of such a computing system could entail loss of control of the aircraft, so the 

application is a candidate for fault tolerance. In practice, the BALIS system operates with a 

safety pilot and a complete set of backup controls that operate conventionally. 

Our analysis is theoretical and is based on rewriting only parts of the system in Ada. The 

software we have written is not intended to be used operationally, and none could ever be used on 

the actual aircraft. Our intention is to use the operational system as a realistic example so as to 

ensure that the analysis we perform takes all the real-world problems into account. We have 

assumed certain required functions are critical even though for this flight control application they 

might not be. Such functions would be critical in other applications and the reason for making 

these assumptions is to make the analysis more likely to apply generally. 
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The remainder of this section contains a complete but superficial description of the 

operation of the aircraft computing system. More detail can be found in reference 11. 

Inputs 

e 

0 

a 

e 
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All inputs to the system fall into one of three general categories. First, aircraft sensors 

provide the software with situational information. These devices measure such quantities as wind 

speed, vehicle acceleration, flap positions, roll, pitch, and yaw. Due to their unreliability, all 

sensors are duplicated or triplicated. A major element of the system’s software is management of 

the redundant sensors to ensure that computations are only performed with good sensors. 

Ground-based radio and microwave navigation aids make up the second category of input. 

During normal flight, angle and distance information from radio beacons at known locations 

allows the software to compute aircraft position accurately. The computed position then serves 

as a periodic correction in the integration of acceleration into velocity and position. In the 

vicinities of certain airports, faster and highly accurate position information is available from 

Microwave Landing System (MLS) transmitters. The concomitant improvement in the accuracy 

of the location information allows fully automated landings. 

The third and final source of input is the cockpit. An enhanced joystick, known as a broZZy 

handle, permits the pilot to fly the plane in a conventional fashion through the computer system. 

The flight control panel allows the pilot to select the desired level of automatic flight assistance. 

This panel also allows him to specify digitally the desired speed, altitude, flight path angle, and 

track angle. The navigation control display keyboard is the medium by which the pilot can 

manage the navigation functions of the system. He can use the keyboard to request general 

information about airports and navigational aids, and to enter or to modify the flight plan. Two 

other control panels allow the pilot to select display formats for the two horizontal situation 
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indicators. A final control panel controls the display format of the attitude director indicator. 

e 
outputs 

e 

a 

e 

All outputs from the system fall in one of two major categories. The first category is the 

effector outputs that control flight of the aircraft. These outputs include commands to the 

ailerons, delta elevators. rudder, and throttle. 

The second category of system output is feedback to the cockpit. The lighting configuration 

of the flight control panel informs the pilot of the level of automatic flight assistance currently 

being offered. Digital readouts on this panel tell him the speed, altitude, flight path angle, and 

track angle. These values are either current or desired as indicated by the lighting configuration 

of the panel. Character outputs to the navigation control display screen provide appropriate 

feedback to the keyboard requests of the pilot. Information sent to the two horizontal situation 

indicators allows the pilot to observe the progress of the aircraft as compared to the flight plan. 

Data output to the attitude director indicator permit the pilot to monitor the orientation of the 

aircraft in space. 

e 
Functional Units 

a 
The application can be divided into four major functional units. Navigation computes the 

situation of the aircraft, The concept of situation includes such measurements as position, 

velocity, acceleration, roll, pitch, and yaw. The navigation unit computes these quantities from 

flight sensor readings and ground aid transmissions. 

0 

Several sensor systems with overlapping functions are used by the navigation unit. 

Microwave Landing System (MLS) transmitters, where available, provide the most accurate 

measurements of latitude, longitude, and position. When the aircraft is in the vicinity of these 

transmitters, integration of acceleration measurements from the Inertial Navigation System (INS) 



e 

a 

0 

e 

a 

gyros on board the plane use the h4LS-derived position as a correction. A second less flexible 

ground-based landing aid, the Instrument Landing System (ILS), supplies the correction 

information near runways which are not equipped with MLS. 

When the aircraft is not landing, data from radio beacons at known locations on the ground 

allow computation of the correction term. Other sensors measure true air speed, magnetic 

heading, magnetic variation, and barometric altitude, and these sensors comprise a correction and 

backup system to the other navigation sensor systems. 

The second major function of the application is guidance. Guidance compares the aircraft 

position to the flight plan and generates appropriate steering and acceleration signals for the flight 

control laws. Horizontal, vertical, and time guidance are separately selectable on the flight 

control panel; however, vertical guidance is disabled until horizontal guidance is engaged, and 

time guidance cannot engage until vertical guidance has done so. Also necessary for engagement 

of a particular level of guidance is specification of a flight plan specific enough for that level. For 

example, time guidance cannot operate until amval times are associated with each waypoint in 

the path. 

e .  

e 

Flight control is the third functional unit. Three control laws comprise the heart of the unit. 

The lateral control law computes the aileron and rudder commands, the vertical control law 

computes the delta elevator command, and the throttle control law computes the throttle 

command. Each control law uses inputs selected according to the flight mode. If no automatic 

guidance mode is engaged, the primary inputs will be from the brolly handle in the cockpit. If 

horizontal guidance is engaged, the lateral control law will use the lateral steering signal from 

guidance. If vertical guidance is engaged, the vertical control law will use the vertical steering 

signal from guidance. If time guidance is engaged, the throttle control law will use the 

- acceleration signal from guidance. 0 
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The fourth and final function of the application is display. The display function provides 

formatted data to the two horizontal situation indicators and the attitude director indicator for 

display to the pilot. The three control panels associated with the indicators indicate the formats 

and contents of the display output data. Navigation and guidance results are the inputs to the 

display unit. 

Timing 

0 

Each of the functions described above operates at one of three speeds. Certain critical 

inputs and outputs are handled every ten milliseconds. Most of the computations are performed 

every fifty milliseconds. Finally, some computations, especially those driven by inputs from a 

human source, are performed essentially as background functions whenever the ten and fifty 

millisecond computations are complete. 

PRELIMINARY ANALYSIS 

e 

In our preliminary analysis, we have concentrated on the target architecture that is presently 

being used by the operational ATOPS system. This is a dual processor configuration in which 

flight-management and flight-control (FM/FC) functions reside on one computer, and sensor 

management and display functions reside on the other. This original partitioning of hnctions 

was determined by the desire for co-location of similar functions. In practice, it allows the 

existing operational system to meet its real-time deadlines. For identification, we refer to the two 

computers as the “FM/FC” and “Displays” computers respectively. 

We have maintained this general partitioning and added recovery to it. This approach has 

the virtue of determining the feasibility of adding recovery to an existing implementation as well 

as evaluating the approach using the criteria outlined in section 3. Modification of an existing 

operational design represents a substantial initial test since, if it can be done successfully, it 
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Fig. 1 - Software Structure 

indicates that existing systems need not be discarded in order to take advantage of non- 

transparent continuation. 

In a paper of this length it is not possible to document all the details of this analysis and so 

we present only a summary. The overall software structure is described followed by a more 

detailed examination of one component of the system. We then summarize the results of 

applying the various evaluation criteria. 
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Software Structure 

0 

a 

The software architecture that we have designed for this target is shown in figure 1. During 

normal operation, each processor executes three tasks. One task on each processor executes 

every ten milliseconds and is synchronized by an external hardware clock. A second task on each 

processor executes every fifty milliseconds and is synchronized by entry calls from the associated 

ten-millisecond task. Finally, each processor has a background task that uses remaining 

processor time. Priorities are used to control the execution order of these tasks. 

When both processors are operational, a block of data of between 200 and 3000 words, the 

length depending on whether certain new inputs are available, is transmitted from the FM/FC to 

the Displays computer every fifty milliseconds. The current Sensor status is transmitted in the 

other direction at similar times. 

a 

a 

a 

a 

a 

The required recovery speed of the services being provided has determined the remainder of 

the software structure. The FM/FC functions must be resumed very quickly following failure. 

Despite the obvious inertia of a commercial air transport, certain control functions must be 

resumed in a few milliseconds. The functions provided by the Displays computer do not have to 

be recovered nearly so rapidly if it fails. These functions are interfacing with humans for the 

most part, either generating displays or accepting and processing inputs from keyboards and 

similar devices. Recovery within a few hundred milliseconds is adequate for these services. 

The alternate software that takes over the services of the Displays computer when it fails is 

integrated into the FM/FC software. During each real-time frame, the FM/FC software checks 

the value of a flag that indicates status of the Displays computer. This flag is set by the FM/FC 

computer’s reconfiguration task and is the only major action of that task. If the flag shows that 

the Displays computer is operational, the FhWC software operates normally. If the computer has 

failed, different software is executed that provides reduced FhWC service and skeleton display 
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and keyboard service. With this approach, it is possible that a considerable delay may occur 

between failure and resumption of display activity because the FM/FC software will only be 

aware of the failure after checking the flag. This may not occur until after extensive processing 

associated with FM/FC functions. 

Since the FM/FC functions must be recovered rapidly, the approach of setting a flag 

following failure of the FM/FC computer and waiting for the Displays computer’s software to 

check it is not sufficient. The software on the Displays computer cannot be designed like the 

FM/FC software just described. Our approach to ensuring very rapid recovery of the FM/FC 

functions is to locate on the Displays computer a skeleton version of parts of the FM/FC 

software. Also, complete replacements for the Display’s computer’s fifty millisecond and 

background executives reside on the Displays computer. There is no replacement for the 

Displays computer’s ten-millisecond executive. 

The reason for these replacement executives is to allow fifty-millisecond and background 

processing to be changed completely and very quickly on the Displays computer following 

failure of the F W C  computer. These executives and all the alternate FM/FC software are 

normally idle. The executives contain entry definitions upon which they are normally suspended 

waiting for entry calls. Following failure, the replacement executives are started by entry calls 

from the reconfiguration task. The reconfiguration task also aborts the primary executives. The 

ten-millisecond executive is not replaced because its functions are, to a large extent, unchanged 

after failure. The reconfiguration task does set a flag so that this executive can make the 

necessary minor changes. 

Since the reconfiguration task has the highest priority of all tasks on each machine, it is 

guaranteed to execute as and when required following failure. Thus the only delays between 

detection of the failure of the FM/FC computer and the resumption of FM/FC service on the 

Displays computer m (1) the time to start the reconfiguration task by generating an entry call, (2) 
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the time to start the replacement executives by entry calls from the reconfiguration task, and (3) 

the startup time of the replacement executives and associated computation functions. We expect 

these delays to be predicatable and small. 

The skeleton FM/FC software is complete in that it can handle all the critical functions 

safely, although in some cases execution frequencies are reduced. Fortunately, it is not essential 

that all the control laws operate at the fastest real-time frame rate. Acceptable, although not 

perfect, performance is achieved at slower rates and so the replacement software operates at 

slower rates wherever possible. 

Clearly, this is only one of many software structures that could be used. It is important to 

note, however, that the use of a skeletal replacement for the FhWC software would not be 

feasible on any other target architecture. If the alternate software for the FM/FC functions had to 

be located on two or more processors, it would have to be partitioned in some way. 

0 .  

0 

Microwave Landing System 

0 

e 

0 

As a detailed example of the way in which recovery might be provided for a critical 

function, we examine the Microwave Landing System software. The MLS system is an example 

of a function that we have viewed as critical although in a strict sense it is not. Failure of MLS 

service, even during landing, need not be disastrous provided that the pilot was informed and that 

he could fly the airplane manually. Taking over manually would be difficult if failure occurred 

close to the ground during an automatic landing but is possible. Recovery in this case could be 

limited to ensuring that sufficient functionality was available to allow manual control through the 

computer system. 

Another view of MLS service is that it is sufficiently important that it should execute in a 

highly hardware-redundant computer such as a SIFT'2 or FlI4Pl3, in which the failure 

0 
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probability is extremely low. However, although MLS processing could be performed on a 

highly reliable computer and is not essential following failure, for the purposes of this 

experiment, we have assumed that it is an example of a function that might be lost and has to be 

recovered. Were it operating in a weight or power restricted environment, such as a military 

aircraft or a spacecraft, it would not be possible to use extensive hardware replication to ensure 

safe operation of such functions. The MLS system represents a realistic example of the type of 

function that must be recovered in certain practical environments. 

Although algorithmically the MLS system is complex, its overall structure is quite simple. 

Data is obtained from microwave receivers on the aircraft and used to compute position. Data 

acquisition requires confidence that a reliable source of MLS signals exists, as opposed to some 

form of radio noise. Thus the incoming data is checked over many real-time frames to ensure 

validity before any use is made of it. The data stream is filtered and various coordinate 

transformations are applied. The actual position, velocity and acceleration computations use a 

third-order complementary filter that depends on historic data for the various filter parameters. 

The MLS computations are performed every fifty milliseconds. 

To recover MLS service if the FM/FC computer is lost, the alternate software must provide 

virtually identical computations and so the alternate software can be derived easily from the 

primary software. Fortunately, the MLS system can provide acceptable service if executed at half 

the normal rate and so the replacement software need be executed only every hundred 

milliseconds. 

In order to start operating quickly, the replacement software must have available the status 

information about the incoming microwave signals and the historic information used as 

parameters in the filter. If this data is not consistent or not available, it can be recomputed in 

exactly the same way that the MLS software computes the information when it is initialized. The 

difficulty is that this computation takes several seconds since, for example, the determination that 
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the signals are reliable requires that they be monitored for many frames. To ensure that MLS 

service can be resumed immediately, the primary software must transmit its complement of data 

to the second processor on every real-time frame. For the MLS application, this amounts to a 

total of only approximately twenty real quantities. 
a 

Evaluation 

e 

a 

e 

Using the software structure just described for this application, most aspects of flexibility at 

development time are reduced very little by the application of non-transparent continuation. The 

reason is that the primary and alternate software components are mostly separate. Consider, for 

example, the Displays computer. It contains two systems that are almost completely isolated 

from each other, one for normal operation and one for operation after failure of the Fh4/FC 

computer. Since there are basically two systems, each can be dealt with separately and changes 

to either has little or no effect on the other. Of more importance is the impact that software 

changes on one processor have on the software of the other processor. However, again 

considering the Displays computer, changing the software used during normal operation has no 

impact on the software of the FM/FC computer. Clearly, changing the software that deals with 

failure of the FAWC computer has no impact on the FM/FC computer software. This relatively 

slight impact on flexibility is certainly not typical and probably will not be found in the analysis 

of other architectures. 

An area where flexibility may be affected considerably is the addition of a processor. The 

addition of a processor to a dual-processor system is a major change and will certainly require 

extensive software modifications. Our analysis of this element of flexibility is not yet complete. 

Recall that the major issue at execution-time is overhead. In this implementation, the 

overhead is different on the two computers. Both have their memory requirements approximately 

doubled. The alternate software plus the space needed to store copies of important data is 
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roughly the same size as the original software. 

0 

0 

0 

0 

Processing overhead on the Displays computer is minimal. The alternate software to deal 

with failure of the FM/FC computer adds nothing since that software is normally suspended. 

Similarly, the reconfiguration task adds nothing during normal operation. The overhead used in 

supporting the failure semantics is also slight since it is a function of the amount of inter-task 

communication between machines. In examining this communication for this application, we see 

that the rate is relatively low. Several rendezvous take place during each fifty millisecond frame 

but this frame rate is not great. 

The processing overhead on the FM/FC is also minimal. The alternate software to deal with 

failure of the Displays computer adds very little since it is not executed during normal operation 

although the selection of which software is executed must be made on each cycle and so the 

overhead of a conditional operation per cycle is incurred. Similarly, the reconfiguration task adds 

nothing during normal operation. The overhead used in supporting the failure semantics is slight 

since it is basically the same as incurred by the Displays computer. 

Providing consistent data is an area where overhead will vary widely with the application. 

It is quite possible that algorithms will require large amounts of data in order to operate correctly. 

In this application, however, this is not the case. Considering the MLS software as an example, 

the filter parameters and the MLS status information must be made consistent across machines on 

each frame. The total volume turns out to be less than one hundred bytes, however, and this 

imposes virtually no burden on processing time or the data communications bus. This order of 

data volume is typical of other functions in this application also. 

0 
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SUMMARY AND CONCLUSIONS 

In this paper, we have described an experiment that we are conducting in an attempt to 

evaluate the non-transparent approach to recovery in distributed systems programmed in Ada that 

must tolerate processor failure. Ada does not address the issues raised by processor failure in 

distributed systems and the analysis that we are performing is based on a version of Ada in which 

no syntactic changes have been made but necessary extensions to the semantics have been added. 

a 
The experiment involves analysis of a typical application consisting of the software for the 

flight control system in an experimental commercial air transport. Only the major control aspects 

of the software and the concurrent parts are being examined. The sequential computations are 

being ignored, except for their general characteristics such as execution time and code volume. 
a .  

e 
It is not possible to draw a general conclusion about the utility of non-transparent 

continuation from a single experiment such as this. Also, the experiment described here is 

ongoing. There are numerous criteria that have to be evaluated under a variety of conditions. We 

plan to examine only a subset of the conditions, and only part of that analysis is complete. 

At this point in the experiment we are very encouraged by the analysis and feel that non- 

transparent continuation is useful for this application at least. Programs that incorporate non- 

0 

0 

transparent continuation are not as flexible during development as those that ignore continuation 

or rely on transparent continuation. However, we remain convinced that some form of 

continuation is essential in crucial distributed systems and that transparent continuation is 

impractical. Our preliminary analysis also indicates that the overhead experienced by this 

application in support of non-transparent continuation is not excessive. 
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9.1. Communicating Processes 

Recovery blocks provide a mechanism for building backward error recovery into sequential 

programs. However, many programs such as operating systems and real-time control systems, 

are concurrent. A concurrent system consists of a set of communicating sequential processes. 

The processes execute in parallel and cooperate to achieve some goal. In so doing, they usually 

exchange data and synchronize their activities in time. Many concepts such as semaphores, 

monitors, ports, and rendezvous have been proposed to control the synchronization and 

communication of concurrent processes. 

It is important that the technique of backward e m r  recovery be extended to concurrent 

systems. These systems are very prone to error because they are usually extremely complex. The 

incorporation of fault tolerance may be a practical method of improving their reliability. 

Unfortunately, backward e m r  recovery in concurrent systems cannot be provided merely by 

using recovery blocks in each separate process. Many new problems arise when concurrent 
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systems are considered and they are the subject of this chapter. 

e 

e 

When two processes communicate, obviously information is passed between them. If two 

processes merely synchronize without explicitly passing data values, they still pass information. 

The information gained by each process in that case is (at least) that the other process has made a 

certain amount of progress. The utility of that kind of information depends upon the amount of 

knowledge about one process’ design that was incorporated into the other process’ design. Any 

form of synchronization, message passing, or shared variable update allows information to pass 

from one process to another. 
0 .  

Suppose two processes communicate between the time that a fault in one of them produces 

the first e m r  and the time that an e m r  is detected. Since the information transfer is two-way, 

whichever process has developed the error may have spread that e m r  to the other. Further, the 

error might not be detected by the process containing the fault. A solution to these problems is to 

roll back, Le. perform backward e m r  recovery, on both processes. If the recovery points for all 

of the processes involved are not carefully coordinated, a problem called the domino efect [37] 

could result. 

e 

* 

0 

Figure 9.1 illustrates the domino effect with three processes P,, P2 and P ,  progressing with 

time to the right. Suppose each process has established recovery points at arbitrary times shown 

as the letters A ,  B , C, D , and E in the figure. The vertical dashed lines represent communications 

between the processes. An error detected in PI at X causes process P, to be rolled back to E and 

process P2 to be rolled back to D . But this rollback invalidates information exchanged between 

P2 and P 3 ,  so P 3  must also be rolled back. The closest recovery point for process P 3  is C. Since 

P, and P 3  communicated between points C and E, P, must again be rolled back, this time to B . 

The effect could conceivably spread to other processes and continue from recovery point to 
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recovery point (like falling dominos) until the entire software system was rolled back to its initial 

state, thus discarding all information gathered during its operative life. 

Clearly, the domino effect has to be avoided. To do this, the backward error recovery 

method employed must coordinate the establishment of recovery points for communicating 

processes and limit the “distance” they can be rolled back. 

The domino effect is the major problem in the provision of backward e m r  recovery in 

concurrent systems. But unrecoverable objects have to be dealt with just as they do in sequential 

systems, and other subtle problems of program structure arise. In this chapter we describe 

various methods of dealing with the domino effect including conversations, exchanges, FT- 

Actions, dialogs, and colloquys. We also describe two other approaches to dealing with recovery 

of concurrent systems, chase protocols, and spheres of control. Finally, we summarize the 

problems of program structure. 
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9.2. Conversations 
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The conversation [37] is the canonical proposal for dealing with communicating processes 

via backward error recovery. In a conversation, a group of processes agree about when recovery 

points will be created and discarded. Each may create a recovery point separately, but they must 

synchronize the time at which the recovery points are discarded. The set of recovery points is 

referred to as a recovery line. Only processes within the group may communicate. At the end of 

their communication, which may include the passage of multiple distinct sets of information, they 

each wait for the others to arrive at an acceptance test for the group. If they pass the acceptance 

test, they commit to the infomation exchange that has transpired by discarding their recovery line 

and proceeding. Should they fail the acceptance test, they aLl restore their states from the 
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recovery l i e .  No process is allowed to smuggle infomation out or in by communicating with a 

process that is not participating in the conversation’s organization. 

Conversations may be nested. From the point of view of a surrounding conversation, a 

nested conversation is an atomic action. The encased activity seems either not to have begun or 

to have completed, and no information that would be evidence to the contrary escapes. 

Figure 9.2 shows an example in which three processes communicate within one 

conversation and two subsets of two each communicate separately within two nested 

conversations. The dotted rectangles represent the recovery lines on the left verticals, the 

acceptance tests on the right verticals, and the prohibition of smuggling on the horizontal 

portions. 

The recovery lines are shown as simultaneously established, but that is not required. Note 

that, if an error were detected in process P while processes P2 and P 3  were conversing, all effects 

since the larger recovery line (including the already-completed conversation between P and Pz) 

would be undone. Once individually rolled back and reconfigured. the same set of conversant 

processes attempt to communicate again, and eventually reaches the same acceptance test again. 

Also any other failure of one of the processes is equivalent to a failure of the acceptance test by 

a l l  of them. Thus, a conversation is a kind of parallel recovery block where each of the primary 

and the alternates are execution segments of a set of processes. 

Conversations were originally proposed as a structuring or design concept without any 

syntax that might be used in a practical programming language. The Name-Linked Recovery 

Block was proposed by Russell as a syntax for conversations [38]. The syntax appropriates that 

of the recovery block: 
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CONV <conversation identifieo : <recovery block> 

What would otherwise be a recovery block within a process, becomes part of a conversation by 

associating a name with the recovery block. The name is called the conversation identifier, and 

all processes executing recovery blocks with the same conversation identifier become members of 

the conversation. The primary and alternate activities of the recovery block become that process’ 

primary and alternate activities during the conversation, and the recovery block’s acceptance test 

becomes that portion of the conversation’s acceptance test appropriate to this process. The 

conversation’s acceptance test is evaluated after the last member of the conversation reaches the 

end of its primary or alternate. If any of the processes fail their acceptance tests, all conversants 

are rolled back. 

In other work [39], Russell proposed loosening the structure of conversations. He proposed 

that the establishment, restoration, and discard of recovery points for processes be under the 

dynamic control of the applications’ programmer rather than encased in a rigid syntax. He gave 

three primitives for these operations: MARK, RESTORE, and PURGE respectively. They are all 

parameterized to designate the subject recovery point and apply to an individual process. This 

allows the programmer to save many states and restore the one he chooses, rather than the most 

recent. Recovery points m not constrained to be RESTOREd in the reverse of the order 

MARKed. The proposal assumes message buffers for inter-process communication. As part of 

backing a process up to a recovery point, previously received messages are placed back into the 

message buffers. 

This mechanism ignores the possibility that the information within a message can 

contaminate a process’ state. Such an approach only applies to producer-consumer systems. 

Many concurrent systems are feedback systems. A producer almost always wants to be informed 

about the effects of the product, and a consumer almost always wants to have some influence over 
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what it will be consuming in the future. The relationships between sensors and a control system 

and between a control system and actuators can be viewed as pure producer-consumer 

relationships, but sensors and actuators are more accurately modeled as unrecoverable objects. 

The proposal allows completely unstructured application of the MARK, RESTORE, and PURGE 

primitives. This fact, along with the complicated semantics of conversations, which the 

primitives are provided to implement, affords the designer much more opportunity to introduce 

faults into the software system. For example, the use of the PURGE primitive on a recovery 

point represents a “promise” never to use a RESTORE primitive on that recovery point. There is 

no enforcement of this “promise”. Also, the utility of the ability to save two recovery points A 

and B and later restore A before restoring B is unclear. 

Kim has proposed several syntaxes for conversations [24]. His approaches assume the use 

of monitors [14] as the method of communication among processes. In the Conversation 

Monitor, shown in Figure 9.3, the conversing activities are grouped with their respective 

processes’ source code, but are well marked at those locations. In the Conversation Datu Type, 

ENSURE <boolean expression> 
USING-CM <conversation monitor identifier> 

{ <conversation monitor identifier> } 
BY 

ELSE BY 
<primary> 

<alternate 1> 
... 
ELSE BY 

<alternate n> 
ELSE ERROR 

e 

0 

Kim’s Conversation Monitor Syntax 

Figure 9.3 
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shown in Figure 9.4, the conversing actions of the several processes are grouped into one place so 

that the conversation has a single location in the source code. The issue these variations address 

is whether it is better to group the text of a conversation and scatter the text of a process or to 

group the text of a process and scatter the text of a conversation. 

TYPE c = CONVERSATION( <conversation names > ) 
PARTICIPANTS proca( <formal parameters ) ; 

procb( <formal parameters ); 
... 

VAR cml : <conversation monitor type> ; 
cm2 : <conversation monitor type>; 
... 

ENSURE <acceptance test> BY 
BEGIN proca : <statements> 

procb : <statements> 
... 

END 
ELSE BY BEGIN 

proca : <statements> 
procb : <statements> 
... 

... 
ELSE ERROR 
BEGIN 

END 
lNlT cml ,cm2... 

VAR convl : C; 

convl .proca( <actual parameters> ); 

Kim’s Conversation Data Type Syntax 

e 

Figure 9.4 
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Kim’s third scheme, the Concurrent Recovery Block shown in Figure 9.5, attempted to 

resolve the differences between the first two by enclosing the entirety of the processes within the 

conversation. Here, a conversation is a special case of a recovery block, within a single parent 

process, in which the primary and the alternates consist solely of initializations of monitors and 

activations of processes. 

The concurrent recovery block is not really a construct for program-ming concurrent 

systems. Rather, it is a construct for programming sequential systems in which a particular 

execution order for occasional statement sequences is not required. 

ENSURE <boolean expression> BY BEGIN 
INlT monitor.1; 
... 
INlT processl .l( <actual parameters ); 
INlT process2.1( <actual parameters> ); 

END 
ELSE BY BEGIN 

INlT monitor.2; 

INlT processl.2( cactual parameters> ); 
INlT process2.2( <actual parameters ); 

END 

... 

... 

... 

... 
ELSE BY BEGIN 

INlT monit0r.n; 

INlT processl .n( cactual parameters> ); 
INlT process2.n( <actual parameters ); 

... 

... 
END 

ELSE ERROR 

Kim’s Concurrent Recovery Block Syntax 

Figure 9.5 
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None of Russell’s or Kim’s conversation schemes enforce the prohibition against 

smuggling. If processes use monitors, message buffers, or ordinary shared variables, other 

processes can easily “reach in” to examine or change values while a conversation is in progress. 

The conversation monitor is designed to prevent smuggling but, as Kim’s description stands, it 

allows a problem that is even more insidious than smuggling. A monitor used within a 

conversation is initialized for each use of the conversation, but not for each attempt within a 

conversation. This allows partial results from the primary or a previous alternate to survive state 

restoration within the individual processes. Since such information is in all probability 

erroneous, it is likely to contaminate the states within all subsequent alternates. 

A major difficulty of the conversation scheme and of all its follow-up syntactic proposals 

lies in the acceptance test(s). The strategies involved in the primary and in the many alternates 

may be so divergent as to require separate checks on the operation of each “try” as well as an 

overall check for acceptability as regards the goal of the statement. 

Another difficulty involving acceptance tests appears when we consider that each process in 

a conversation has its own individual reasons for communicating, while the system of which 

these processes are a part has more global concerns for bringing them together. A single, 

monolithic acceptance test would be too concerned with acceptability in terms of the surrounding 

system to detect errors local to the component processes. Similarly, the combination of local 

acceptance tests of the individual processes is insufficient since it does not incorporate the design 

of the surrounding system. A conversation needs a check on satisfaction of the surrounding 

system’s goal in the communication as well as checks on satisfaction of the component 

processes’ goals. 
0 
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Desertion is the failure of a process to enter a conversation when other processes expect its 

presence. Whether the process will never enter the conversation, is simply late, or enters the 

conversation only to take too long or never anive at the acceptance test(s), does not matter to the 

others. The processes in a conversation need a means of extricating themselves if the 

conversation begins to take too long. Each process may have its own view of how long it is 

willing to wait, especially since processes may enter a conversation asynchronously. Only the 

concurrent recovery block scheme addresses the desertion problem. The solution there is to 

enclose the entirety of each participating process within the conversation. This is too restrictive 

in that not only cannot a process fail to arrive at a conversation, it cannot exist outside of the 

conversation. 

The original proposal of conversations made no mention of what was to be done if the 

processes ran out of alternates. Two presumptions may be made (1) that the number of alternates 

is unbounded, or (2) that an error is to be detected automatically in each of the processes, as is 

assumed in all of the proposed syntaxes. What the syntactic proposals do not address is that, 

when a process fails in a primary attempt at communication with one group of processes to 

achieve its goal, it may want to attempt to communicate with an entirely different group as an 

alternate strategy for achieving that goal. This is the kind of divergent strategy alluded to above. 

The name-linked recovery block and the conversation monitor schemes do not mention whether it 

is an error for different processes to make different numbers of attempts at communicating. 

Although those schemes may assume that is covered under the desertion issue, it may not be if 

processes are deliberately allowed to converse with alternate groups. 

It can occur that a nested conversation commits to a change in an unrecoverable object only 

to have the surrounding conversation fail. This presents a problem. One suggestion was that the 

object be marked for alteration but that the change not actually occur until the outermost 
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How to construct meaningful acceptance tests was an open problem for recovery blocks. It 

remains so for conversations. An acceptance test must be able to detect errors in results of any 

alternate in the context of independently constructed algorithms. Yet the same acceptance test 

must be able to pass results of any alternate, no matter how degraded the service it provides. The 

test must not be so complex or slow as to duplicate the algorithms of the primary or alternates. 

Although some thought has been given to this problem [27], it too remains open. 

9.3. Exchanges and Simple Recovery 

e 

c 

0 

* 

Many real-time systems are concurrent and are used frequently in applications requiring 

very high reliability. Real-time systems using a cyclic executive have a relatively simple 

structure which can be used to advantage in implementing backward error recovery. 

Under a cyclic executive, time is divided into “frames”. Inputs are accepted at the 

beginning of each frame, and outputs are produced at the end of each frame. Anderson and 

Knight proposed exchanges [2] in an attempt to adapt conversations to this real-time program 

structure. 

An exchange is a conversation in which a l l  of the communicants are created at the recovery 

line and destroyed at the acceptance test. The beginning of a frame represents the “recovery 

lime”, and the acceptance test is at the end of the frame. Failure of the acceptance test causes 

alternate outputs to be generated for the current frame using some simple alternate computation, 

e.g. repeating those of the previous frame. The only information saved at the “recovery line” is 

that needed to provide the alternate outputs since the communicating processes will be started 
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anew rather than backed up. The execution-time support keeps track of which processes fail 

individually and how often the group fails. This information transcends frame boundaries and is 

used to determine when a process is to be replaced for the next or subsequent frames. 
0 

0 

0 

0 

0 

The idea of exchanges has direct utility only in systems employing the cyclic executive 

scheduling regime. The proposal does not address systems of fully asynchronous processes or 

systems employing mixed disciplines. The exchange concept thus imposes a cobegin ... coend 

programming structure, which may not always be suitable. For example, it becomes difficult to 

program multiple frame rate systems, the first variation that is often imposed on the cyclic 

executive theme [31]. 

9.4. Deadlines 

The Deadline Mechanism was proposed by Campbell, et al to deal with timing faults in 

real-time systems [SI. When a goal must be achieved before a certain amount of time passes, a 

preferred algorithm is supplied along with an alternate algorithm and a duration. The alternate 

algorithm is assumed to be correct and deterministic so the amount of time it requires is known 

apriori. The underlying scheduler is responsible for ensuring that, if the preferred algorithm 

cannot be completed before the deadline (duration plus time the preferred algorithm started), then 

the alternate algorithm can be. Several simulation studies have been performed showing a 

reduction in timing failures when such a mechanism is employed [8,49,29]. 

The deadline mechanism ussumes that the alternate algorithm is correct. Nothing is said 

about checking the acceptability of the preferred algorithm’s results if it does complete on time. 

The proposal assumes that the amount of time required by the alternate algorithm is known 
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a priori, yet provides no method of communicating this information to the underlying scheduler. 

The additional (alternate) processes in the scheduling mix could even be the cause of a failure of 

a preferred algorithm to complete on time. No mention is made of how the data states of the 

preferred and alternate algorithms are to be kept separate. This proposal focuses too narrowly 

upon only one issue, that of timing, and provides incomplete coverage of that. 

9.5. Chase Protocols 

a 

0 

a 

Some concurrent systems do not require the sender of a message to wait for message 

receipt. In some of these systems, a message can be “in transit” for long periods of time. In 

such systems. backward recovery in the sender may require that the message be “chased down” 

and removed or, if already received, that the message’s effects be undone. For systems such as 

these, the idea of chase prorocoh was invented [33]. 

As a process backs up to a recovery point, all messages which it has sent since establishing 

that recovery point are chased down. Messages caught in transit are simply deleted. If a message 

has already been received, the receiving process is backed up to the most recent recovery point it 

established before it received the message. The receiving process then enters a chase protocol to 

deal with messages it had sent since establishment of the recovery point. 

Also, as a process backs up to a recovery point, all messages which it has received since 

establishing that recovery point are gathered for replaying. For those messages which are 

unrecoverable, e.g. the message was issued in response to a message that has been retracted, the 

senders are made to back up and enter the chase pmtocol. A chase protocol terminates when a 

recovery line is found dynamically. 

e -75  - 



0 

0 

For cases in which data exists independently of any process, the data items themselves 

“send” and “receive” the special fail messages required to chase down other information. 

Copies of the data are considered to have been sent to processes as messages, and for updating 

purposes, back fmm processes to the data items themselves. It is under these circumstances that 

the recoverability of messages that might otherwise be replayed at a process becomes important. 

If a copy-of-data message is not recoverable, the data item must be backed up by backing up the 

processes responsible for its current value to recovery points beyond their setting of that value. 

Chase protocols work on the assumption that the consequences of the domino effect will 

usually be limited, and that very extensive rollback is pathological. Rather than attempting to 

prevent the domino effect explicitly, they attempt to find a recovery line by systematic search. 

Thus, the most obvious and damning drawback of chase protocols is that they leave a system 

open to the possibility (perhaps remote) of the domino effect. This may be unacceptable in 

critical applications. 

a 
9.6. Spheres of Control 

Davies catalogued many of the concepts of concurrent systems, recovery, and integrity in a 

taxonomy he called datu processing spheres of control [ 1 11. Spheres of control are intended to 

address many problems such as keeping processes from interfering with each other, backing 

processes to a previous state, and preventing other processes’ use of uncommitted data. The 

concepts allow for multiple processes to cooperate within recovery regions while describing the 

restrictions on their activities necessary for maintaining integrity within such an environment. 

These multiple processes may be (largely) independent, but may be using partial (uncommitted) 

data from each other. Spheres of control can cross machine boundaries; one of the examples 
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Spheres of control make use of the concepts of process atomicity, commitment, recovery 

before a process has committed, recovery after a process has committed, and maintaining 

consistency by controlling dependence of processes’ activities on those of others. 

The concepts were described without implementation advice for generality of application. 

Indeed, the description can be considered a taxonomy or catalogue of techniques already used in 

some systems. The emphasis is on placement, or what needs to be done in a system to ensure 

integrity and recoverability, without prescribing how. 

The descriptions are in terns that might be used by accounting auditors of business-oriented 

applications. 

As a catalogue of ideas, without an enforceable basis for their application, spheres of 

control are rather disorganized. However, Davies’ concluding remark was that many of those 

ideas need to be included in a programming language to permit their use and enforcement in 

applications. 

e 

9.7. FT-Actions 

0 

All of the other approaches described in this chapter attempt to provide backward recovery. 

The Fault-Tolerant Atomic Action (FT-Action) introduced by Jalote and Campbell [20] (also 

known as the S-Conversation [ 191) is an attempt to unify the concepts of backward and forward 

recovery for concurrent systems. Backward recovery is provided using conversations and 

forward recovery by a systematic approach to exception handling combined with atomic actions. 
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All of the concepts in the FT-Action are introduced as extensions to the language CSP [17]. 
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Central to the theme of FT-Actions is a revised form of atomic actions. Jalote and 

Campbell distinguish between the original definition of atomic action in which atomicity is 

combined with state restoration and a reduced concept in which no state restoration takes place. 

The former they refer to as recoverable atomic actions and the latter as basic atomic actions. 

Both concepts are required since the former implies backward error recovery. To allow for 

forward recovery, the more hdamental notion is used. 

The FT-Action is defined in terms of the language CSP because CSP provides a particularly 

simple framework in which to study concurrent systems. The language has no shared memory 

between processes, and all inter-process communication must be programmed explicitly. These 

simple semantics eliminate most potential forms of smuggling and constrain communication. 

As with all the other proposals discussed in this chapter, when used for backward recovery 

an FT-Action is basically a construct for forcing processes to communicate in an orderly fashion 

to prevent the domino effect. In general, processes may only communicate within an FT-Action 

and then only with other processes in the same FT-Action. FT-Actions may be nested to provide 

multiple recovery regions. 

If backward error recovery is required, the syntax of the FT-Action provides a notation for 

describing conversations. The processes participating in the FT-Action are listed in a declaration 

and each process describes its primary and alternate modules in a recovery-block-like syntax. For 

any given FT-Action each participant is required to have the same number of alternates. 
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The processes execute their primaries, communicating with each other as necessary, and 

then evaluate their acceptance tests. If any test fails an exception is raised, but an exception may 

also be raised at any point by any process to signal failure during execution of its primary. The 

FT-Action completes if all acceptance tests are successll. If they are not, all processes back up 

and try the next alternate. If the alternates are exhausted without success, an exception is raised 

in the surrounding block (if there is one) to signal that the entire FT-Action has failed. 

If forward error recovery is to be used, the R-Action for each process describes the code 

sequence that the process will attempt together with an exception handler. Failure of the attempt 

is signaled by the process raising an exception and, in that case, the exception is raised in all the 

processes which then all execute exception handlers. Forward and backward recovery are 

combined by allowing any alternate in a backward-error-recovery structure to contain an 

exception handler. If an exception is raised and a handler is present, the handler deals with the 

situation if it can. If no handler exists, or a further exception is raised in a handler, then backward 

error recovery is invoked. 

The mappings of the various forms of the IT-Action into CSP primitives are given by 

Jalote and Campbell. They point out that these mappings could be implemented easily in a 

preprocessor thereby allowing programs written in CSP enhanced with FI'-Actions to be 

translated into CSP and thereby executed. 

In practice, there are several issues that FT-Actions do not address. For example, there is 

no explicit provision for dealing with desertcr processes. The designers of the concept 

acknowledge the problem, and point out that some form of time-out needs to be included. In 

addition, as will be shown later, the use of the original conversation mechanism limits the 

diversity that the can be achieved in the alternates and the coverage of the acceptance tests. 
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9.8. Dialogs and the Colloquy 

In an effort to solve the general problems associated with conversations as discussed in 

section 9.2, Gregory and Knight developed the dialog and colloquy [12,13]. These concepts 

permit true independence of algorithms between alternates, allow time constraints to be specified, 

and are accompanied by syntactic proposals that are extensions to the language Ada. 

A dialog is a way of enclosing a set of processes in an atomic action. A colloquy is a 

construct in which a set of atomic actions (specified by dialogs) can be described. From the 

perspective of each process, the set of atomic actions in which it participates constitutes the 

primary and the series of alternates of a fault-tolerant structure. 

Further flexibility is introduced in these concepts by providing both a local acceptance test 

for each process and a global acceptance test for the group. 

9.8.1. Dialogs 

a 

0 

In a dialog, a set of processes establish individual recovery points, and communicate among 

themselves and with no others. They then all either discard their recovery points or restore their 

states from their recovery points, and then proceed. 

Success of a dialog is the determination that all participating processes should discard their 

recovery points and proceed. Failure of a dialog is the determination that they should restore 

their states from their recovery points and proceed. Nothing is said about what should happen 

after success or failure; in either case the dialog is complete. 
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Dialogs may be properly nested, in which case the set of processes participating in an inner 

dialog is a subset of those participating in the outer dialog. Success or failure of an inner dialog 

does not necessarily imply success or failure of the outer dialog. Figure 9.7 shows a set of three 

processes communicating within a dialog. 

The discuss statement is the syntactic form that denotes a dialog. Figure 9.8 shows the 

general form of a discuss statement. The dialog-name associates a particular discuss statement 
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Three Processes Communicating in a Dialog 

Figure 9.7 

DISCUSS dialog-name BY 

sequence-of-statements 

TO ARRANGE Boolean-expression; 

A DISCUSS Statement 

Figure 9.8 
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with the discuss statements of the other processes participating in this dialog, thereby determining 

the constituents of the dialog dynumicalty. At execution time, when control enters a process’ 

discuss statement with a given dialog name, that process becomes a participant in a dialog. Other 

participants are any other processes which have already likewise entered discuss statements with 

the same dialog name and have not yet left, and any other processes which enter discuss 

statements with the same dialog name before this process leaves the dialog. Either all 

participants in a dialog leave it with their respective discuss statements successful, or all leave 

with them failed, i.e. the dialog succeeds or fails. 

The Boolean expression in the discuss statement is the local acceptance test. It represents 

the process’ local goal for the interactions in the dialog. If this Boolean expression or that in the 

corresponding discuss statement of any other process participating in this dialog is evaluated 

false, the discuss statement of each participant in the dialogfails. If all of the local acceptance 

tests succeed, the common goal of the group, Le. the global acceptance test is evaluated. If this 

common goal is true, the conresponding discuss statements of all participants in the dialog 

succeed; otherwise they fail. Syntactically, the common goal is specified by a parameterless 

Boolean function with the same name as the dialog name in the discuss statement. 

For the actions of the dialog’s participants to appear atomic to other processes, all forms of 

communication must be controlled. The set of variables shared by processes participating in a 

dialog are locked by the compiler and execution-the support system to prevent smuggling. 

While locked, the shared variables may only be used by processes in that dialog. Which variables 

are to be shared, and therefore locked, is specified in dialog declarations. The dialog names used 

in discuss statements are also declared in dialog declarations. The general form of a dialog 

declaration is: 

0 
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DIALOG function-name SHARES ( name-list ); 

The function - name is the identifier being declared as a dialog name and is the name of the 

function defining the global acceptance test. The names in the name-list are the shared variables 

which will be used within dialogs that use this dialog name. 

9.8.2. The Colloquy 

A colloquy is a collection of dialogs. At execution time, a dialog is an interaction among 

processes. Each individual process has its own Iocd goal for participating in a dialog, but the 

group has a larger global goal; usually providing some part of the service required of the entire 

system. If, for whatever reason, any of the local goals or the global goal is not achieved, a 

backward error recovery strategy calls for the actions of the particular dialog to be undone. In 

attempting to ensure continued service from the system, each process may make another attempt 

at achieving its original local goal, or some modijied local goal through entry into a dzfferent 

dialog. Each of the former participants of the now defunct dialog may choose to interact with an 

entirely separate group of processes for its alternate algorithm. The altered constituency of the 

new dialog(s) almost certainly requires new statement(s) of the original global goal. The set of 

dialogs which take place during these efforts on the processes' part is a colloquy. A set of four 

processes engaged in a colloquy that involves three dialogs is shown in Figure 9.9. 

0 '  

e 

0 

A colloquy, like a dialog or a rendezvous in Ada, does not exist syntactically but is entirely 

an execution-time concept. However, the places where the text of a process statically indicates 

entry into colloquys are marked by a variant of the Ada select statement called a 

dialog-sequence. 
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Figure 9.9 

The general form of a dialogsequence is shown in Figure 9.10. At execution time, when 

SELECT 
attempt-1 

attempt-2 

attempt-3 

OR 

OR 

TIMEOUT simple-expression 
sequence-of-statements 

ELSE 
sequence-of-statements 

END SELECT; 

Dialog-Sequence 
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Figure 9.10 
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contml reaches the select keyword, a recovery point is established for that process. The process 

then attempts to perform the activities represented in Figure 9.10 by attempt-1 . The attempt is 

actually a discuss statement followed by a sequence of statements. If the performance of these 

activities is successfirl, control continues with the statements following the dialogsequence. If 

the attempt was not successfid, the process’ state is restored from the recovery point and the other 

attempts will be tried in order. Thus, the dialogsequence enables the programmer to provide a 

primary and a list of alternate algorithms by which the process may achieve its goals at that point 

in its text. Note however that the process may communicate with entirely different sets of 

processes in each attempt, thereby allowing greater diversity in the alternates than is possible in 

the conversation or similar. Also, each process may specify a different number of alternates from 

the other processes to accommodate its own goal. 

Exhaustion of all attempts for a given process with no success brings control to the else part 

after restoration of the process’ state from the recovery point. The else part contains a sequence 

of statements which allows the programming of a “last ditch” algorithm for the process to 

achieve its goal. If this sequence of statements is successful, control continues after the 

dialog-sequence. If not, or if there was no statement sequence, the surrounding attempt fails. 

Timing constraints can be imposed on colloquys (and hence on dialogs). Any participant in 

a colloquy can specify a timing constraint which consists of a simple expression on the timeout 

part of the dialog-sequence. A timing constraint specifies an interval during which the process 

may execute as many of the attempts as necessary to achieve success in one of them. If the 

interval expires, the current attempt fails, the process’ state is rcstored from the recovery point, 

and execution continues at the sequence of statements in the timeout part. The attempts of the 

other processes in the same dialog also fail but their subsequent actions are determined by their 

own dialog-sequences. If several participants in a particular colloquy have timing constraints, 
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expiration of one has no effect on the other timing constraints. The various intervals expire in 

chronological order. As with the else part, the timeout part allows the programming of a “last 

ditch’’ algorithm for the process to achieve its goal, and is really a fonn of forward recovery 

since its effects will not be undone, at least at this level. 

The dialog and colloquy concepts provide implementable answers to the difficulties of other 

backward error recovery proposals. These ideas afford the e m r  detection flexibility of multiple 

acceptance tests. They also invert the relationship between operation of the recovery point and 

inter-process communication. This permits truly independent alternate algorithms to the extent 

that a process can communicate with different groups of processes to achieve its goals. 

Colloquys avail the programmer of many powerful facilities for management of backward 

e m r  recovery. It is tempting to think that this solves all the problems that might arise, and that 

the syntax for the colloquy can be integrated into a language for programming concurrent systems 

with no further concern. 

a 

9.9. New Difficulties 

a 

a 
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Problems beyond the domino effect arise when including recovery in realistic concurrent 

systems [13]. They have to do with enforcement of the prohibition on smuggling and 

organization of programs. 

The merging of recovery facilities into a real language can reveal semantic difficulties not 

readily apparent in the general discussion of the ideas. Certain aspects of actual programming 

languages seem to conflict with the goals and design of backward e m r  recovery facilities. In this 

section, we introduce some of the problems which arise in attempting to merge backward e m r  
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recovery into a modem programming language. This examination discloses several new 

problems with backward error recovery in real languages. These problems arise because of the 

fundamental requirements of backward error recovery in concurrent systems. We use the dialog 

and colloquy merely as examples. 

In their most general form, the problems are: 

(1) the many means of smuggling of information that are afforded by many programming 

language constructs, and 

(2) the incompatibilities between the planned establishment of recovery lines for backward 

error recovery and the existing explicit communication philosophies of modem 

programming languages. 

9.9.1. Smuggling 

a 
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Smuggling is a transfer of information, or communication, between a process engaged in a 

particular dialog and a process not so engaged. From the point of view of a surrounding dialog, a 

nested dialog is supposed to be an atomic action. The encased activity seems either not to have 

begun or to have completed, and no information that would be evidence to the contrary escapes. 

Were smuggling allowed, backward recovery of the participants in a dialog could produce an 

inconsistent state. Thus smuggling must be prevented. 

We have so far ignored the many means of smuggling. Smuggling is usually assumed to be 

controllable. All of the approaches mentioned in this chapter depend for their avoidance of the 

domino effect upon the prohibition of smuggling. The very term “sphere of control” evokes an 
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image of a barrier surrounding the communicating processes and their uncommitted results. The 

FT-Action was defined in an language without means of smuggling, so its presentation ignored 

the issue. 

c 
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Many means of smuggling exist in modem programming languages. They break down into 

explicit and implicit information flows. Explicit information flows derive from deliberate 

communications attempts on the part of the programmer using the explicit communications 

mechanisms in the language such as messages or rendezvous. Implicit information flows occur 

through shared variables, attributes and process manipulation. 
a .  

A major potential form of smuggling lies in message traffic. In Ada, smuggling through 

explicit information flows, is not problematic. The Ada rendezvous is a specialized form of 

message communication through a restricted set of protocols. When a process attempts to 

communicate with another, it is suspended until the communication is complete. The sender does 

not proceed immediately after sending a message. This is the only form of explicit 

communication in Ada. The dialog prevents smuggling via messages for an Ada-like language. 

A more general message-based language would present more problems for backward e m r  

recovery. 

0 

e 

The second form of smuggling, that through implicit information flows, is much more 

involved. implicit information flows are methods by which one process gains information about 

another process’ activities or status without using the explicit communications statements 

provided in the language. Implicit flows come in two categories. The first category is provided 

by the facilities in a language which one would normally expect to allow implicit information 

flows. The other category is provided by language facilities or features which one would not 

normally think of as involving communication. 
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c 

The first category, expected implicit information flows, is represented by shared, variable 

objects. One normally expects implicit information flows through these objects. They come in 

two sub-categories, based upon their modes of access. Shared variables are objects with one 

access path. Aliasing and pointers provide objects with multiple access paths. 

The category of unexpected implicit information flows is represented by process 

manipulations. Ada allows processes to be manipulated in several ways. These are task creation, 

task destruction, and examination of other pmcesses’ execution states. This last one is 

represented by Ada’s task attributes. The dynamic creation and destruction of processes are 

facilities which one would not expect to afford implicit information flows. That smuggling may 

occur through them is a very unusual concept. 

9.9.2. Communication Philosophies 

e 

The second of the most general problems is the existence of incompatibilities between the 

planned establishment of recovery lines for backward error recovery and the explicit 

communication philosophies of modem programming languages. These stem from conflicts 

between the planned establishment of recovery lines and modem programming precepts. These 

incompatibilities are typified by detailed problems with service tasks in Ada. Some of them are 

recapitulated here. 

First, Ada allows a task to make nondeterministic choices among entries when accepting 

calls. There is no corresponding nondeterminism when choosing to enter a dialog. Second, Ada 

enforces mutual exclusion among entry calls k ing  serviced. The dialog allows any process to 

enter the communication at will. Third, a server task may be requested to perform its service at 
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any time in Ada. Under the dialog regimen, it seems a server must actively seek out its clients to 

achieve the same dialog nesting. Finally, the server cannot leave a dialog after dealing with one 

client and before seeking the next client until the first client is ready to leave (Le. the server can 

become trapped). 

Ada has nondeterminism and exclusivity in its communication mechanism. The dialog, 

which forms an envelope around communication, is not nondeterministic. The envelope restricts 

severely one’s use of nondeterminism. The envelope is also intentionally non-exclusive to 

participants. These program structuring problems are not specific to the dialog and colloquy 

concepts. Rather, they represent a general conflict of planned establishment of recovery lines and 

languages designed to facilitate use of modem programming precepts. 

9.9.3. Summary 

0 
The language facilities shown in this chapter seem on the surface to be adequate for 

recovery in concurrent systems, however they turn out to be incomplete solutions to these 

problems. A formal approach to recovery in concurrent systems should have syntactic expression 

so its semantic rules may be enforced automatically. The approach and its syntax cannot be 

designed separately from other facilities of the programming language into which they are to be 

included. To avert interaction of facilities that might allow subversion of the recovery approach’s 

rules, the language must be designed with recovery in mind from the outset. 

0 
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